Visual Analytics for Correlation-Based Comparison of Time Series Ensembles
نویسندگان
چکیده
An established approach to studying interrelations between two non-stationary time series is to compute the ‘windowed’ cross-correlation (WCC). The time series are divided into intervals and the cross-correlation between corresponding intervals is calculated. The outcome is a matrix that describes the correlation between two time series for different intervals and varying time lags. This important technique can only be used to compare two single time series. However, many applications require the comparison of ensembles of time series. Therefore, we propose a visual analytics approach that extends the WCC to support a correlation-based comparison of two ensembles of time series. We compute the pairwise WCC between all time series from the two ensembles, which results in hundreds of thousands of WCC matrices. Statistical measures are used to derive a concise description of the time-varying correlations between the ensembles as well as the uncertainty of the correlation values. We further introduce a visually scalable overview visualization of the computed correlation and uncertainty information. These components are combined with multiple linked views into a visual analytics system to support configuration of the WCC as well as detailed analysis of correlation patterns between two ensembles. Two use cases from very different domains, cognitive science and paleoclimatology, demonstrate the utility of our approach.
منابع مشابه
Similarity estimators for irregular and age-uncertain time series
Paleoclimate time series are often irregularly sampled and age uncertain, which is an important technical challenge to overcome for successful reconstruction of past climate variability and dynamics. Visual comparison and interpolation-based linear correlation approaches have been used to infer dependencies from such proxy time series. While the first is subjective, not measurable and not suita...
متن کاملVisual analytics techniques for large multi-attribute time series data
Time series data commonly occur when variables are monitored over time. Many real-world applications involve the comparison of long time series across multiple variables (multi-attributes). Often business people want to compare this year’s monthly sales with last year’s sales to make decisions. Data warehouse administrators (DBAs) want to know their daily data loading job performance. DBAs need...
متن کاملVisualization of Time-Series Data in Parameter Space for Understanding Facial Dynamics
Over the past decade, computer scientists and psychologists have made great efforts to collect and analyze facial dynamics data that exhibit different expressions and emotions. Such data is commonly captured as videos and are transformed into feature-based time-series prior to any analysis. However, the analytical tasks, such as expression classification, have been hindered by the lack of under...
متن کاملViscous Fingers: A topological Visual Analytic Approach
We present a web-based visual analytics framework to visualize viscous fingers that combines particle systems, direct volume rendering, and graphs. In our first step, we apply a Gaussian filter to the particle dataset to obtain a voxel representation for the entire computational domain. Next, we extract and track the viscous fingers using Reeb graphs, where the fingers are treated as level sets...
متن کاملMultiple Cluster Comparison:The Identification of Stable Objects
With the rapid increase in size and complexity of data, coupled visualization and analysis, or visual analytics, has become a major methodology for data analysis and exploration. We describe a specific integration of analysis and visualization for the evaluation of cluster stability. We partition or decompose a dataset into a family of disjoint subsets. Partitions may refer to the results of cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Graph. Forum
دوره 34 شماره
صفحات -
تاریخ انتشار 2015